STED properties of Ce, Tb, and Eu doped inorganic scintillators

نویسندگان

  • M. S. ALEKHIN
  • J. RENGER
  • M. KASPERCZYK
  • P.-A. DOUISSARD
  • T. MARTIN
  • Y. ZORENKO
  • D. A. VASIL’EV
  • M. STIEFEL
  • L. NOVOTNY
  • M. STAMPANONI
چکیده

Scintillator-based X-ray imaging is a powerful technique for noninvasive realspace microscopic structural investigation such as synchrotron-based computed tomography. The resolution of an optical image formed by scintillation emission is fundamentally diffraction limited. To overcome this limit, stimulated scintillation emission depletion (SSED) X-ray imaging, based on stimulated emission depletion (STED) microscopy, has been recently developed. This technique imposes new requirements on the scintillator material: efficient de-excitation by the STED-laser and negligible STED-laser excited luminescence. In this work, luminescence depletion was measured in several commonly-used Ce, Tb, and Eu doped scintillators using various STED lasers. The depletion of Tb and Eu via 4f-4f transitions was more efficient (Ps = 8...19 mW) than Ce depletion via 5d-4f transitions (Ps = 43...45 mW). Main origins of STED-laser excited luminescence were oneand two-photon excitation, and scintillator impurities. LSO:Tb scintillator and a 628 nm cw STED-laser is the most promising combination for SSED satisfying the above-mentioned requirements. © 2017 Optical Society of America OCIS codes: (170.6280) Spectroscopy, fluorescence and luminescence; (160.5690) Rare-earth-doped materials; (100.6640) Superresolution; (180.2520) Fluorescence microscopy; (310.6845) Thin film devices and applications; (140.5680) Rare earth and transition metal solid-state lasers. References and links 1. A. Koch, C. Raven, P. Spanne, and A. Snigirev, “X-ray imaging with submicrometer resolution employing transparent luminescent screens,” J. Opt. Soc. Am. A 15(7), 1940–1951 (1998). 2. M. S. Alekhin, G. Patton, C. Dujardin, P.-A. Douissard, M. Lebugle, L. Novotny, and M. Stampanoni, “Stimulated scintillation emission depletion X-ray imaging,” Opt. Express 25(2), 654 (2017). 3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulatedemission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). 4. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007). 5. T. Martin and A. Koch, “Recent developments in X-ray imaging with micrometer spatial resolution,” J. Synchrotron Radiat. 13(2), 180–194 (2006). 6. C. Webb and J. Jones, Handbook of Laser Technology and Applications (CRC Press, 2003). 7. R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011). 8. R. Wu, Q. Zhan, H. Liu, X. Wen, B. Wang, and S. He, “Optical depletion mechanism of upconverting luminescence and its potential for multi-photon STED-like microscopy,” Opt. Express 23(25), 32401–32412 (2015). 9. C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013). 10. K. I. Willig, B. Harke, R. Medda, and S. W. Hell, “STED microscopy with continuous wave beams,” Nat. Methods 4(11), 915–918 (2007). Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1251 #281488 http://dx.doi.org/10.1364/OE.25.001251 Journal © 2017 Received 2 Dec 2016; revised 11 Jan 2017; accepted 12 Jan 2017; published 17 Jan 2017 11. P. Dorenbos, “Fundamental Limitations in the Performance of Ce3+ -, Pr3+ -, and Eu2+ Activated Scintillators,” IEEE Trans. Nucl. Sci. 57(3), 1162–1167 (2010). 12. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods 5(9), 763–775 (2008). 13. A. N. Butkevich, G. Y. Mitronova, S. C. Sidenstein, J. L. Klocke, D. Kamin, D. N. H. Meineke, E. D’Este, P.-T. Kraemer, J. G. Danzl, V. N. Belov, and S. W. Hell, “Fluorescent rhodamines and fluorogenic carbopyronines for super-resolution STED microscopy in living cells,” Angew. Chem. Int. Ed. Engl. 55(10), 3290–3294 (2016). 14. D. J. Ehrlich, P. F. Moulton, and R. M. Osgood, Jr., “Ultraviolet solid-state Ce:YLF laser at 325 nm,” Opt. Lett. 4(6), 184–186 (1979). 15. P. Rambaldi, R. Moncorgé, J. P. Wolf, C. Pédrini, and J. Y. Gesland, “Efficient and stable pulsed laser operation of Ce:LiLuF4 around 308 nm,” Opt. Commun. 146(1-6), 163–166 (1998). 16. C. D. Marshall, J. A. Speth, S. A. Payne, W. F. Krupke, G. J. Quarles, V. Castillo, and B. H. T. Chai, “Ultraviolet laser emission properties of Ce3+-doped LiSrAlF6 and LiCaAlF6,” J. Opt. Soc. Am. B 11(10), 2054–2065 (1994). 17. L. Kastrup and S. W. Hell, “Absolute optical cross section of individual fluorescent molecules,” Angew. Chem. Int. Ed. Engl. 43(48), 6646–6649 (2004). 18. E. Rittweger, B. R. Rankin, V. Westphal, and S. W. Hell, “Fluorescence depletion mechanisms in superresolving STED microscopy,” Chem. Phys. Lett. 442(4-6), 483–487 (2007). 19. A. Cecilia, V. Jary, M. Nikl, E. Mihokova, D. Hänschke, E. Hamann, P. A. Douissard, A. Rack, T. Martin, B. Krause, D. Grigorievc, T. Baumbach, and M. Fiederle, “Investigation of the luminescence, crystallographic and spatial resolution properties of LSO:Tb scintillating layers used for X-ray imaging applications,” Radiat. Meas. 62, 28–34 (2014). 20. Z. Marton, H. B. Bhandari, C. Brecher, S. R. Miller, B. Singh, and V. V. Nagarkar, “High efficiency microcolumnar Lu2O3:Eu scintillator thin film for hard X-ray microtomography,” JPCS 425, 062016 (2013). 21. Y. Tatsuya and O. Yasutake, “Amplification and lasing characteristics of Tb 3+ -doped fluoride fiber in the 0.54 μm band,” Jpn. J. Appl. Phys. 46(41), L991–L993 (2007). 22. P. A. Loiko, V. I. Dashkevich, S. N. Bagaev, V. A. Orlovich, A. S. Yasukevich, K. V. Yumashev, N. V. Kuleshov, E. B. Dunina, A. A. Kornienko, S. M. Vatnik, and A. A. Pavlyuk, “Spectroscopic characterization and pulsed laser operation of Eu 3+:KGd(WO 4) 2 crystal,” Laser Phys. 23(10), 105811 (2013). 23. D. K. Sardar, K. L. Nash, R. M. Yow, J. B. Gruber, U. V. Valiev, and E. P. Kokanyan, “Absorption intensities and emission cross sections of Tb3+(4f8) in TbAlO3,” J. Appl. Phys. 100(8), 083108 (2006). 24. Y. Zorenko, V. Gorbenko, I. Konstankevych, B. Grinev, and M. Globus, “Scintillation properties of Lu3Al5O12:Ce single-crystalline films,” Nucl. Instrum. Methods Phys. Res. A 486(1-2), 309–314 (2002). 25. www.crytur.cz 26. D. A. Vasil’ev, D. A. Spassky, V. V. Voronov, V. O. Sokolov, A. V. Khakhalin, N. V. Vasil’eva, and V. G. Plotnichenko, “Effect of Al and Ce ion concentrations on the optical absorption and luminescence in Gd3(Al,Ga)5O12:Ce3+ epitaxial films,” Inorg. Mater. 51(10), 1008–1016 (2015). 27. T. Martin, P. A. Douissard, M. Couchaud, A. Cecilia, T. Baumbach, K. Dupre, and A. Rack, “LSO-based single crystal film scintillator for synchrotron-based hard X-ray micro-imaging,” IEEE Trans. Nucl. Sci. 56(3), 1412– 1418 (2009). 28. M. Nikl and A. Yoshikawa, “Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection,” Adv. Opt. Mater. 3(4), 463–481 (2015). 29. I. V. Khodyuk, J. T. M. de Haas, and P. Dorenbos, “Nonproportional response between 0.1-100 keV energy by means of highly monochromatic synchrotron X-Rays,” IEEE Trans. Nucl. Sci. 57(3), 1175–1181 (2010). 30. W. Chewpraditkul, L. Swiderski, M. Moszynski, T. Szczesniak, A. Syntfeld-Kazuch, C. Wanarak, and P. Limsuwan, “Scintillation properties of LuAG:Ce, YAG:Ce and LYSO:Ce crystals for gamma-ray detection,” IEEE Trans. Nucl. Sci. 56(6), 3800–3805 (2009). 31. P.-A. Douissard, A. Cecilia, T. Martin, V. Chevalier, M. Couchaud, T. Baumbach, K. Dupré, M. Kühbacher, and A. Rack, “A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation,” J. Synchrotron Radiat. 17(5), 571–583 (2010). 32. Y. Wu, Z. Luo, H. Jiang, F. Meng, M. Koschan, and C. L. Melcher, “Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study,” Nucl. Instrum. Methods Phys. Res. A 780, 45–50 (2015). 33. P. C. Ricci, M. Salis, R. Corpino, C. M. Carbonaro, E. Fortin, and A. Anedda, “A kinetics model for Tb3+ recombinations in low doped Tb:Lu1.8Y0.2SiO5 crystals,” J. Appl. Phys. 108(4), 043512 (2010). 34. S. K. Sharma, S. Som, R. Jain, and A. K. Kunti, “Spectral and CIE parameters of red emitting Gd3Ga5O12:Eu3+ phosphor,” J. Lumin. 159, 317–324 (2015). 35. Y. Zorenko, M. Nikl, V. Gorbenko, V. Savchyn, T. Voznyak, R. Kucerkova, O. Sidletskiy, B. Grynyov, and A. Fedorov, “Growth and luminescent properties of Lu2SiO5 and Lu2SiO5:Ce single crystalline films,” Opt. Mater. 33(6), 846–852 (2011). 36. L. Zheng, G. Zhao, C. Yan, X. Xu, L. Su, Y. Dong, and J. Xu, “Raman spectroscopic investigation of pure and ytterbium-doped rare earth silicate crystals,” J. Raman Spectrosc. 38(11), 1421–1428 (2007). 37. A. A. Kaminskii, H. Rhee, O. Lux, H. J. Eichler, S. N. Bagayev, H. Yagi, K. Ueda, A. Shirakawa, and J. Dong, “Stimulated Raman scattering in “garnet” Lu3Al5O12 ceramics – a novel host-materiel for Lnand TM-lasant ions,” Laser Phys. Lett. 8(6), 458–464 (2011). Vol. 25, No. 2 | 23 Jan 2017 | OPTICS EXPRESS 1252

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and Scintillation properties of Sol - Gel derived Lu 2 SiO 5 : Ln 3 + ( Ln = Ce , Eu , Tb ) powders

In this paper, we report the synthesis, the characterization and the scintillation properties of sol-gel derived Lu 2 SiO 5 (LSO) powders. Ce 3+ , Eu 3+ and Tb 3+ doped LSO powders have been synthesized by an original sol-gel process. The purity of the materials has been checked by X-Ray diffraction, confirming the elaboration of monophasic powders even for doped samples. Finally, the scintilla...

متن کامل

Luminescence studies on lanthanide ions (Eu, Dy and Tb) doped YAG:Ce nano-phosphors

Yttrium aluminum garnet nanoparticles both undoped and doped with lanthanide ions (Ce, Eu, Dy and Tb) having average size around 30 (73nm) nm were prepared by glycine nitrate combustion method followed by annealing at a relatively low temperature of 800 1C. Increase in the annealing temperature has been found to improve the luminescence intensity and for 1200 1C heated samples there exists stro...

متن کامل

Lanthanide impurity level location in GaN, AlN, and ZnO

A method that has proven succesful in locating the energy levels of divalent and trivalent lanthanide ions (Ce, Pr,..., Eu,...Yb, Lu) in wide band gap inorganic compounds like YPO4 and CaF2 is applied to locate lanthanide levels in the wideband semiconductors GaN, AlN, their solid solutions AlxGa1-xN, and ZnO. The proposed schemes provide a description of relevant optical and luminescence prope...

متن کامل

Pechini synthesis of lanthanide (Eu3+/Tb3+or Dy3+) ions activated BaGd2O4 nanostructured phosphors: an approach for tunable emissions.

Trivalent lanthanide (Eu(3+), Tb(3+) and Dy(3+)) ions activated tunable color emitting BaGd2O4 (BG) phosphors were synthesized by a facile Pechini-type sol-gel process. The X-ray diffraction pattern confirmed the orthorhombic phase after annealing at 1300 °C for 5 h. Morphological studies were performed based on the analysis of transmission electron microscopy images, which showed needle type n...

متن کامل

The Effect of Annealing, Synthesis Temperature and Structure on Photoluminescence Properties of Eu-Doped ZnO Nanorods

In this study un-doped and Eu-doped ZnO nanorods and microrads were fabricated by Chemical Vapor Deposition (CVD) method. The effects of annealing, synthesis temperature and structure on structural and photoluminescence properties of Eu-doped ZnO samples were studied in detail. Prepared samples were characterized using X-Ray diffraction (XRD), scanning electron microscopy (SEM), particle size a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017